Logic circuits composed of flexible carbon nanotube thin-film transistor and ultra-thin polymer gate dielectric
نویسندگان
چکیده
Printing electronics has become increasingly prominent in the field of electronic engineering because this method is highly efficient at producing flexible, low-cost and large-scale thin-film transistors. However, TFTs are typically constructed with rigid insulating layers consisting of oxides and nitrides that are brittle and require high processing temperatures, which can cause a number of problems when used in printed flexible TFTs. In this study, we address these issues and demonstrate a method of producing inkjet-printed TFTs that include an ultra-thin polymeric dielectric layer produced by initiated chemical vapor deposition (iCVD) at room temperature and highly purified 99.9% semiconducting carbon nanotubes. Our integrated approach enables the production of flexible logic circuits consisting of CNT-TFTs on a polyethersulfone (PES) substrate that have a high mobility (up to 9.76 cm(2) V(-1) sec(-)1), a low operating voltage (less than 4 V), a high current on/off ratio (3 × 10(4)), and a total device yield of 90%. Thus, it should be emphasized that this study delineates a guideline for the feasibility of producing flexible CNT-TFT logic circuits with high performance based on a low-cost and simple fabrication process.
منابع مشابه
Printed thin-film transistors and complementary logic gates that use polymer-coated single-walled carbon nanotube networks
Seung-Hyun Hur Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; Beckman Institute and Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; and Center for Advanced Functional Polymers, Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Sc...
متن کاملPatterned Carbon Nanotube Thin-Film Transistors with Transfer-Print Assembly
Conditions for the transfer printing of patterned carbon nanotube (CNT) films, along with a Au-gate, a poly methylmethacrylate (PMMA) dielectric layer and Au source-drain electrodes have been developed for the fabrication of thin-film transistors on a polyethylene terephthalate (PET) substrate. Chemical vapor deposition (CVD) grown CNTs were patterned using a photolithographic method. Transfer ...
متن کاملProcess Optimization of Deposition Conditions for Low Temperature Thin Film Insulators used in Thin Film Transistors Displays
Deposition process for thin insulator used in polysilicon gate dielectric of thin film transistors are optimized. Silane and N2O plasma are used to form SiO2 layers at temperatures below 150 ºC. The deposition conditions as well as system operating parameters such as pressure, temperature, gas flow ratios, total flow rate and plasma power are also studied and their effects are discussed. The p...
متن کاملOrganic nanodielectrics for low voltage carbon nanotube thin film transistors and complementary logic gates.
We report the implementation of three dimensionally cross-linked, organic nanodielectric multilayers as ultrathin gate dielectrics for a type of thin film transistor device that uses networks of single-walled carbon nanotubes as effective semiconductor thin films. Unipolar n- and p-channel devices are demonstrated by use of polymer coatings to control the behavior of the networks. Monolithicall...
متن کاملFlexible CMOS electronics based on p-type Ge2Sb2Te5 and n-type InGaZnO4 semiconductors
Ultra-thin p-type chalcogenide glass Ge2Sb2Te5 (GST) semiconductor layers are employed to form flexible thin-film transistors (TFTs). For the first time, TFTs based on GST show saturating output characteristics and an ON/OFF ratio up to 388, exceeding present reports by a factor of ~20. The channel current modulation is greatly enhanced by using ultra-thin 5 nm thick amorphous GST layers and 20...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016